Controlling Fusion Reactor Instability with Deep Reinforcement Learning with Aza Jalalvand - #682
The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) - Podcast tekijän mukaan Sam Charrington
Kategoriat:
Today we're joined by Azarakhsh (Aza) Jalalvand, a research scholar at Princeton University, to discuss his work using deep reinforcement learning to control plasma instabilities in nuclear fusion reactors. Aza explains his team developed a model to detect and avoid a fatal plasma instability called ‘tearing mode’. Aza walks us through the process of collecting and pre-processing the complex diagnostic data from fusion experiments, training the models, and deploying the controller algorithm on the DIII-D fusion research reactor. He shares insights from developing the controller and discusses the future challenges and opportunities for AI in enabling stable and efficient fusion energy production. The complete show notes for this episode can be found at twimlai.com/go/682.