Linear Digressions
Podcast tekijän mukaan Ben Jaffe and Katie Malone

Kategoriat:
289 Jaksot
-
Network effects re-release: when the power of a public health measure lies in widespread adoption
Julkaistiin: 15.3.2020 -
Causal inference when you can't experiment: difference-in-differences and synthetic controls
Julkaistiin: 9.3.2020 -
Better know a distribution: the Poisson distribution
Julkaistiin: 2.3.2020 -
The Lottery Ticket Hypothesis
Julkaistiin: 23.2.2020 -
Interesting technical issues prompted by GDPR and data privacy concerns
Julkaistiin: 17.2.2020 -
Thinking of data science initiatives as innovation initiatives
Julkaistiin: 10.2.2020 -
Building a curriculum for educating data scientists: Interview with Prof. Xiao-Li Meng
Julkaistiin: 2.2.2020 -
Running experiments when there are network effects
Julkaistiin: 27.1.2020 -
Zeroing in on what makes adversarial examples possible
Julkaistiin: 20.1.2020 -
Unsupervised Dimensionality Reduction: UMAP vs t-SNE
Julkaistiin: 13.1.2020 -
Data scientists: beware of simple metrics
Julkaistiin: 5.1.2020 -
Communicating data science, from academia to industry
Julkaistiin: 30.12.2019 -
Optimizing for the short-term vs. the long-term
Julkaistiin: 23.12.2019 -
Interview with Prof. Andrew Lo, on using data science to inform complex business decisions
Julkaistiin: 16.12.2019 -
Using machine learning to predict drug approvals
Julkaistiin: 8.12.2019 -
Facial recognition, society, and the law
Julkaistiin: 2.12.2019 -
Lessons learned from doing data science, at scale, in industry
Julkaistiin: 25.11.2019 -
Varsity A/B Testing
Julkaistiin: 18.11.2019 -
The Care and Feeding of Data Scientists: Growing Careers
Julkaistiin: 11.11.2019 -
The Care and Feeding of Data Scientists: Recruiting and Hiring Data Scientists
Julkaistiin: 4.11.2019
In each episode, your hosts explore machine learning and data science through interesting (and often very unusual) applications.