Linear Digressions

Podcast tekijän mukaan Ben Jaffe and Katie Malone

Kategoriat:

289 Jaksot

  1. Google Flu Trends

    Julkaistiin: 26.3.2018
  2. How to pick projects for a professional data science team

    Julkaistiin: 19.3.2018
  3. Autoencoders

    Julkaistiin: 12.3.2018
  4. When Private Data Isn't Private Anymore

    Julkaistiin: 5.3.2018
  5. What makes a machine learning algorithm "superhuman"?

    Julkaistiin: 26.2.2018
  6. Open Data and Open Science

    Julkaistiin: 19.2.2018
  7. Defining the quality of a machine learning production system

    Julkaistiin: 12.2.2018
  8. Auto-generating websites with deep learning

    Julkaistiin: 4.2.2018
  9. The Case for Learned Index Structures, Part 2: Hash Maps and Bloom Filters

    Julkaistiin: 29.1.2018
  10. The Case for Learned Index Structures, Part 1: B-Trees

    Julkaistiin: 22.1.2018
  11. Challenges with Using Machine Learning to Classify Chest X-Rays

    Julkaistiin: 15.1.2018
  12. The Fourier Transform

    Julkaistiin: 8.1.2018
  13. Statistics of Beer

    Julkaistiin: 2.1.2018
  14. Re - Release: Random Kanye

    Julkaistiin: 24.12.2017
  15. Debiasing Word Embeddings

    Julkaistiin: 18.12.2017
  16. The Kernel Trick and Support Vector Machines

    Julkaistiin: 11.12.2017
  17. Maximal Margin Classifiers

    Julkaistiin: 4.12.2017
  18. Re - Release: The Cocktail Party Problem

    Julkaistiin: 27.11.2017
  19. Clustering with DBSCAN

    Julkaistiin: 20.11.2017
  20. The Kaggle Survey on Data Science

    Julkaistiin: 13.11.2017

7 / 15

In each episode, your hosts explore machine learning and data science through interesting (and often very unusual) applications.

Visit the podcast's native language site